PN
5

instructables

Arduino Based Pulse Induction Detector - Flip Coil

by JorBi

The Idea
Having build some metal detectors in the past with varying results | wanted to explore the capabilities of the
Arduino in that direction.

There are some good examples of how to build metal detectors with the Arduino, some here as instructables. But
when looking at them, they normally require either quite some external components for the analog signal treatment
or the sensitivity is quite low.

When thinking about metal detectors, the main topic is how to sense the slight changes of voltage in signals
related to the search coil. These changes are normally very small. The most obvious approach would be in using
the analog inputs of the ATmega328. But looking at the specifications there are two basic problems: they are
(often) to slow and the resolution is (in most cases) to low.

At the other hand, the Arduino is running at 16MHz and has quite some timing capabilities i. e. a resolution of
0.0625uS if using clock speed. So instead of using the analog input for sensing, the simplest way of sensing small
dynamic changes in voltage is to compare the change in voltage drop over time at a fixed reference voltage.

For this purpose the ATmega328 has the neat feature of an internal comparator between D6 an D7. This
comparator is able to trigger an interrupt, enabling precise event handling. Leaving beside the neatly coded timing
routines like millis() and micos() and going into the internal timer of the ATmega328 with much higher resolution,
the Arduino is a great basis for metal detecting approaches.

So from a source code view, a good start would be to program the internal comparator for ,change*in polarity of
the inputs and use an internal counter with the highest speed possible for change in timing of the changes.

The general code in Arduido to acheive this is:

Arduino Based Pulse Induction Detector - Flip Coil: Page 1

http://www.instructables.com
http://www.instructables.com/id/Arduino-Based-Pulse-Induction-Detector/
http://www.instructables.com/member/JorBi/

// Defining all required pre variables etc. and setting up the registers

unsigned char clockSelectBits = _BV(CS10); // no prescale, full xtal

void setup() {

pinMode(6,INPUT); /I + of the comparator - by setting them as INPUT, they are
// set to high impedance

pinMode(7,INPUT); // - of the comparator - by setting them as INPUT, they are
// set to high impedance

cli(); // stop interrupts

TCCR1A = 0; /I set entire TCCR1A register to 0

TCCR1B = 0; /I same for TCCR1B -> normal mode
TCNT1 = 0; /linitialize counter value to 0;
TCCRI1B |= clockSelectBits; // sets prescaler and starts the clock

TIMSK1 = _BV(TOIE1); /I sets the timer overflow interrupt enable bit

sei(); //allow interrupts

ACSR =

(0 << ACD) | // Analog Comparator: Enabled

(0 << ACBG) | // Analog Comparator Bandgap Select: AINO is applied to the positive input
(0 << ACO) | // Analog Comparator Output: Off

(1 << ACI)| // Analog Comparator Interrupt Flag: Clear Pending Interrupt

(1 << ACIE) | // Analog Comparator Interrupt: Enabled

(0 << ACIC) | // Analog Comparator Input Capture: Disabled

(0 << ACIS1 | 0 << ACISO0 // interrupt on output toggle

/1 (0 << ACIS1 | 1 << ACISO // reserved

// (1 << ACIS1| 0 << ACISO // interrupt on falling output edge

/I (1 << ACIS1 | 1 << ACISO0 // interrupt on rising input edge

}

// this routine is called every time the comparator creates an interrupt
ISR(ANALOG_COMP _vect) {

oldSREG=SREG;

cli();

timeStamp=TCNT1;

SREG = 0ldSREG;

}

// this routine is called every time there is an overflow in internal counter
ISR(TIMER1_OVF_vect){
timer1_overflow_count++;

}

// this routine is used to reset the timer to 0
void resetTimer(void){
oldSREG = SREG;

cli(); // Disable interrupts
TCNT1 = 0; /finitialize counter value to 0
SREG = oldSREG; // Restore status register

TCCRI1B |= clockSelectBits; // sets prescaler and starts the clock
timer1_overflow_count=0; // resets overflow counter

}

Of course this idea in not entirely new. The main part of this code can be found elsewhere. A good implementation
such an aproach for a microcontroller found for on TPIMD - Tiny Pulse Induction Metal Detector home page.

www.miymd.com/index.php/projects/tpimd/ (unfortunately this page is not online anymore, there currently is a
backup of the site at www.basic4mcu.com, seach for "TPIMD").

Arduino Based Pulse Induction Detector - Flip Coil: Page 2

Step 1: Arduino Pulse Induction Idea - Flip Coil

The idea is to use the Arduino as a Pulse Induction
detector, like in TPIMD, as the timing idea of the
decay curve seems to work pretty well. The problem
with Pulse Induction detectors is, that they normally
need to different voltage to work. One voltage to
power the coil and a separate voltage to deal with the
decay curve. These two voltage sources make pulse
induction detectors always a bit complicated.

Looking at the voltage of the coil in a PI detector, the

resulting curve can be devided in two different stages.

The first stage is the pulse itself powering the coil and
building up the magnetic field (1). The second stage
the is voltage decay curve, starting with a voltage
peak, then ajusting fast to the "no-power" voltage of
the coil (2). The problem is, that the coil changes its
polarity after the pulse. Is the pulse positive (Var 1. in
the attached picture) the decay-curve is negative. Is
the pulse negative, the decay curve will be positive
(Var 2. in the attached picture)

To solve this basic problem, the coil needs to be
Jlipped over” electronically after the pulse. In this
case the pulse can be positive and the decay curve
can be positive as well.

To achieve this, the coil must be isolated from Vcc
and GND after the pulse. At this moment, there is
only a current flowing through a damping resistor.
This isolated system of coil and damping resistor can
than be ,oriented” to whatever reference voltage.
This, in theory will create the combined positive curve

(bottom of the drawing)

This positive curve can than be used via the
comparator to detect the point of time where the
decay voltage ,crosses” a reference voltage. In case
of treasures near to the coil, the decay curve changes
and the point of time crossing the reference voltage
changes. This change can than be detected.

After some experimenting the following circuit proved
to work.

The circuit consists of an Arduino Nano module. This
module drives two MOSFET transistors powering the
coil (at SV3) via D10. When the pulse at D10 ends,
both MOSFETSs isolate the coilfrom 12V and GND.
The saved energy in the coil bleeds out through R2
(220 Ohms). At the same time R1 (560 Ohms)
connects the former positive side of the coil tho GND.
This changes the negative decay curve at R5 (330
Ohms) to a positive curve. The diodes protect the
input pin of the Arduino.

R7 is a voltage devider at about 0.04V. At the
moment the decay curve at D7 gets more negative
than the 0.04 at D6 an interrupt is triggert and the
duration after the end of the pulse is saved.

In case of metal near to the coil, the decay curve lasts
longer, and the time between the end of the pulse and
the interrupt gets longer.

Arduino Based Pulse Induction Detector - Flip Coil: Page 3

2+

ol pet — f USE

Step 2: Building the Detector (Breadboard)

Building the detector is quite easy. This can be done
either on a breadboard (sticking to the original circuit)
or by soldering the parts on a PCB.

The D13 LED on the Arduino Nano board is used as
an indication for metal

Unsing a breadboard is the fastest way to the working
detector. Quite some wiring is needed, still this can
be done an a small breadboard. In the pictures this is
shown in 3 steps as the Arduino and the MOSFETs
are hiding some of the wires. When testing |
disconnected the diodes somehow without noticing at
first. This had no negative effect on the behavior of
the detector. In the PCB version of the circuit | left
them out completely.

Not shown on the pictures are the connections to a
0.96 OLED display. This display is connected:

Vce — 5V (at the Arduino pin, not the supply
voltage!!!)

GND - GND

SCL-A5

SDA - A4

This OLED Display is needed to calibrate the detector
initially. This is done by setting the right voltage at
PING of the Arduino. This voltage should be around

0.04V. The display helps to set the right voltage.

The breadboard version works pretty well, although
probably not suited for going into the wild.

Arduino Based Pulse Induction Detector - Flip Coil: Page 4

AA Battery — I

=
fasrreg vy

fritzing

AN Battery "—’I AA Battery I

fAuamaeg vy : | faaneg vy

fritzing

Arduino Based Pulse Induction Detector - Flip Coil: Page 5

Step 3: Going PCB

As for soldering | do not really like double sided high- 3. the supply voltage for the voltage-divider at D6 is
tech PCB, so | modified the circuit to fit on a on sided given by a HIGH level signal at D8
PCB.

4. driver pin for the MOSFETs was changed.
Following modifications were made:

This way a single sided PCB could be created which

1. the diodes were left out. can be soldered on universal PCBs. Using this circuit

you will having a working PI detector with only 8-10
2. the gates of the MOSFETSs got a resistor of 10 external components (depending if the OLED display
Ohm and/or a speaker is used).

Arduino Based Pulse Induction Detector - Flip Coil: Page 6

Step 4: Setting Up and Using the Detector

If the detector is build properly and the program is
written to the Arduino, the easiest (if not the only) way
of setting the unit up is to use an OLED display. The
display is attached to 5V, GND, A4, A5. The display
should show ,calibrating” after the unit is powered up.
After some seconds it should say ,calibration done*
and three numbers should be shown on the display.

The first number is the ,reference value” identified
during calibration. The second value is the last
measured value and the third value a a mean-value of
the last 32 measurements.

These three values should be more or less the same
(in my test-cases under 1000). The middle value
should be more or less stable.

To start the initial set up, there should be no metal
near to the coil.

Now the voltage divider (trim potentiometer) should
be trimmed so that the lower two values should be set
to a maximum while still giving stable reading. There
is a critical setting, where the middle value starts
giving weird readings. Turn back the trimmer to obtain
stable values again.

It might happen, that the display freezes. Just press
the reset button and start over.

Object| Gold Ring

For my setup (coil: 18 turns @ 20cm) the stable value
is around 630-650. Once set, press the reset button,
the unit re-calibrates and all tree values should be in
a same range again. If metal is now brought to coil,
the LED on the Arduino-Board (D13) should light up.
An attached speaker gives some clicking noises
(there some room for improvement in the
programming there).

To prevent high expectations:

The detector does detect some stuff, but it stays a
very simple and limited detector.

To give an impression of the capabilities, a did some
reference detections with different other detectors.
Looking at the results, it is still quite impressive for a
detector with only 8 external parts but not matching
professional detectors.

Looking at the circuit and the program, there is a lot of
room for improvement. The values of the resistors
were found by experience, the pulse time of 250ms
was chosen randomly, the coil parameters as well. If
you have ideas for improvements, | would be more
than happy to discuss them.

Have fun!

20ct coin | Wire cutter | small Screwdriver |
Detector .
Minelab Gold Seeker 13 10 28 13
Firat Pulse Induction 9 9 19 15
Metalloscop 1.5 2.5 5 05
FlipCoil Pulse Induction 4 < 14 8
1. Pirat
Pulse

Arduino Based Pulse Induction Detector - Flip Coil: Page 7

Induction
Detector

http:/www.instructable...

Step 5: Update1: Using a 16x2 LCD

Improvements

During further testing | realized that the library for the
I2C OLED Display was using up considerable time.
So | decided to use a 16x2 display with a 12C
converter instead.

So | adopted the program to the LCD display adding
some useful features. The first line of the display now
shows the signal strength of a possible indication.
The second line now shows two values. The fist
indicated the current signal deviation compared to the
calibration value. This value should be "0". If this
value is constantly negative or positive, the detector
should be re calibrated by pressing the reset button.
Positive values indicate metal near to the coil.

The second value shows the actual delay value of the
decay curve. This value is normally not that
interesting, but is needed to the initial setup of the
detector.

The program now allows for multiple pulse durations
in a sequence (means of experimenting / improving
the performance). | did not achieve any break
through. So default is set to one pulse duration.

Initial Setup of the Detector

Download

When setting up the detector, the second value of the
second line is relevant (the first one can be ignored).
Initially the value can be "unstable" (see picture).
Turn the trim resistor until the value get to a stable
reading. Then turn it to increase the value to a
maximum stable value. Press the reset button to
recalibrate and the detector is ready for use.

| got the impression that by setting the maximum
stable value, | lost sensitivity for non-iron metals. So it
might be worth some experimenting of the settings to
have a good sensitivity for non-iron stuff.

Coils
| build 3 coils for further testing

1 -> 18 turns @ 200mm
2 -> 25 turns @ 100mm
3 -> 48 turns @ 100mm
Interestingly all coils worked pretty well, with almost

the same performance (20ct coin at 40-50mm in air).
This might be a quite subjective observation.

Arduino Based Pulse Induction Detector - Flip Coil: Page 8

https://cdn.instructables.com/ORIG/FO8/ZOMB/J86HTGET/FO8ZOMBJ86HTGET.ino
https://cdn.instructables.com/ORIG/FO8/ZOMB/J86HTGET/FO8ZOMBJ86HTGET.ino

Download

http:/www.instructable...

E that url http://www.miymd.com/index.php/projects/tpimd/ is parked by some aggressive ad site.

Thanks for hinting me. That's rather unfortunate, as the description and the circuit was quite nice. |
changed the decription and gave a hint to an alternative way finding the circuit.

E No worries

Hello friends in my arduino nano, | have the following declaration errors

LiquidCrystal_I2C lcd (0x27,2,1,0,4,5,6,7,3, POSITIVE);

MORE IF | CHANGE LiquidCrystal_I2C Icd (0x3F, 16,2); ,, IT ALREADY WORKS RIGHT
Hello friends in my arduino nano, | have the following declaration errors

LiquidCrystal_I2C Icd (0x27,2,1,0,4,5,6,7,3, POSITIVE);

MORE IF | CHANGE LiquidCrystal_I2C lcd (0x3F, 16,2); ,, IT ALREADY WORKS RIGHT
ola amigos no meu arduino nano, estou com o seguinte erros de declaracao
LiquidCrystal_I2C Icd (0x27,2,1,0,4,5,6,7,3, POSITIVO); configuragao vazia ()

obg

Dear antoniobras,

It would be helpful if you would ask your question in English. | took the time to write everything in
English (not being native-speaker). | am sure we will find a solution to the problem.

¥/ JorBi:

You explanations have good clear detail, similar to your TTL IC tester post.

The coil winding seems almost too simple. 18 Turns at 200mm coil-diameter.

20cm diameter is 629mm wire length per turn and 11.4m overall length.
Arduino Based Pulse Induction Detector - Flip Coil: Page 9

https://cdn.instructables.com/ORIG/FKI/EPU2/J8AH2A16/FKIEPU2J8AH2A16.ino
https://cdn.instructables.com/ORIG/FKI/EPU2/J8AH2A16/FKIEPU2J8AH2A16.ino
http://www.miymd.com/index.php/projects/tpimd/

| assume you had used a solid 22 AWG (0.26mm) or 24 AWG (0.20mm) diameters.

These Copper wire diameters and sizes are plentiful here in North America in discarded CAT-3,
especially in 15 meter / 50 foot lengths.
Would alloy metal wire have a different detection result?

This is a very good minimal Pulse Induction Detector design, leveraging a V3 NANO and two very
common 540 MosFETs to keep the overall cost very low.

Your design layout with soldered 'point-to-point' perforated board pad-PCB construction also helps
the timing stability by keeping distributed capacity low. Building this on breadboard with long
dupont wires would not have the same clean result.

| used different wire diameters for the coils (whatever | could find at my desk) The 200mm coil is
made of 0.8mm wire, the smaller coils are made of 0.4mm copper wire. | probably will test different
diameters to find out if they make a difference.

I am not sure if other alloys would make any difference.

The oscilation of the coil due to distributed capacity is indeed something to keep in mind. This
mainly influences the damping resistor. Here is some room for experimenting, as the given value in
the schematic was found by trying different values to obtain the best results.

¥4 example of costs;

at the local College bookstore/parts shop, Students can buy {clone} V3 NANO at $7.50 Cdn, and
IFR540 at gty 5 for $2.50 Cdn. That same perf-board is $1.25, and the diode, resistors are pennies.
The addendum lists the 1602 on 12C version which is $9 now on sale, so the whole thing tops out
at under $25 or so.

John
Neat. Thank you for posting this

Good one! Well explained!

Arduino Based Pulse Induction Detector - Flip Coil: Page 10

	Arduino Based Pulse Induction Detector - Flip Coil
	The Idea
	Step 1: Arduino Pulse Induction Idea - Flip Coil
	Step 2: Building the Detector (Breadboard)
	Step 3: Going PCB
	Step 4: Setting Up and Using the Detector
	Attachments

	Step 5: Update1: Using a 16x2 LCD
	Improvements
	Coils
	Initial Setup of the Detector
	Attachments

